Announcements

Os horários das aulas mudaram!



Information on the course on Interaction between radiation and matter, SFI5905, 2022-1

Semester: 2022-1
Responsable: Prof. Philippe W. Courteille, philippe.courteille@ifsc.usp.br
Start and end of classes: 29.3.2022 to 7.7.2022
Queries: via e-mail
Time and location of classes:Thursdays from 14h00 to 16h00 in room F-210 and Fridays from 8h00 to 10h00 Google meet
Dates of the seminar: 21.6.2022 to 7.7.2022
Holidays: 11.4.-16.4.2022 (semana santa), 21.4.-23.4.2022 (Tiradentes), 16.6.-18.6.2022 (Corpus Christi), 9.7.2022 (Revolução Constitucionalista)
Language: Portuguese, French, German or English (to be agreed with the students)
Workload:
Theory 4 per week
Practice3 per weak
Studies 8 per weak
Duration15 weaks
Total 225 hours
Content:

This is a graduate course! The 'raison d'être' of graduate courses shall be to bring the student to the forefront of current research activities in the the lecturer's area of expertise. For the present course this means that the student is supposed to be familiar with the basics of quantum mechanics and its formalism. We're not going to ruminate the hydrogen atom, nor to work off a predefined list of 'same old' classical topics of quantum mechanics. It is up to the student who realizes that he has gaps of knowledge to fill them until being able to benefit from the lectures.

This is a course on atomic and molecular physics, which means that the emphasis of the course will be set on learning how to use our knowledge of the quantum mechanical apparatus to solve 'concrete and relevant' problems. We will learn how to calculate, analytically and numerically, the dynamics of observables in state of the art experiments performed at the IFSC. Possible topics of this lecture include:

1. A quick review of quantum mechanics and its formalism,
2. the harmonic oscillator, field probability distributions and quantum coherences,
3. angular momentum algebra and the collective spin formalism,
4. time-dependent perturbation theory,
5. absorption and emission of light, absorption and fluorescence spectra,
6. density operator and master equations for open systems,
7. quantization procedure for field and atomic motion, the Jaynes-Cummings model,
8. light scattering and cooperativity in coupled dipoles models,
9. Dicke states and superradiant phase transitions, spin-squeezing and superradiant lasing,
10. atoms in cavities, collective atomic motion,
11. Bragg scattering and Bloch oscillations,
12. detection and manipulation of ultracold gases.

Evaluation/approvation:

Written tests will be applied, homeworks will be given, and a seminar will be organized. The seminar will include a written monograph and an oral presentation. The seminar grade counts 1/2 of the final grade. The presentation of the exercises and the participation in the subsequent discussions will be evaluated and counts for 1/2 in the final grade.


Recomended literature: Philippe W. Courteille, Apostila do Curso: Quantum mechanics
D.J. Griffiths, Introduction to Quantum mechanics, 3a edição, Pearson
P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics (3rd ed.) Oxford University, (1997, 2001)
I.N. Levine, Quantum Chemistry, Allyn and Bacon (3rd ed.) Boston (1983)
C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics (vol. 1) Wiley Interscience
H.A. Bethe, R. Jackiw, Intermediate Quantum Mechnanics, (2nd ed.) W.A. Benjamin, Inc)
J.I. Steinfeld, Molecules and Radiation, The MIT Press
A. Corney, Atomic and Laser Spectroscopy, Clarendon Press, Oxford
B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, John Wiley & Sons



Exercises

To successfully absolve this course, the student must study the material indicated in the 'Topics' column and made available in the courses' booklet 'Quantum Mechanics applied to Atoms and Light' until the date indicated in bold letters in the table below. Also, he must solve the exercises indicated in blue color and be prepared to present it fluently.

Date of presentationChapter of scriptExerciseTopic
-------------------------------------------------------------------------
29.03.2022 1.2.1 - 1.2.7 Blackbody radiation, Einstein relations and Lambert-Beer law
31.03.2022 1.2.10.3The laws of Wien and Stefan-Boltzmann (Leandro)
31.03.2022 1.2.10.5Photons in a resonator (Claudio)
31.03.2022 1.2.10.6Number of modes in a cavity (Alejandra)
31.03.2022 1.2.8 - 2.2.5 Saturation, basics of quantum theory
06.04.2022 1.2.10.8Number of photons per radiation mode (Lucas)
06.04.2022 1.2.10.9Atoms in an optical cavity (Claudio)
06.04.2022 1.2.10.11Applying the Lambert-Beer law (Alejandra)
06.04.2022 2.2.6 - 2.3.7 States, observables and representations
07.04.2022 2.1.8.1Conservation of probability (Hugo)
07.04.2022 2.2.9.3Quantum superposition (Cosme / Erika)
07.04.2022 2.3.8 - 2.5.4 Product spaces, time evolutions and translations
22.04.2022 2.2.9.2Normalization of the Bloch vector (Erika, Claudio)
22.04.2022 2.3.9.5Spin rotation operators (Leandro)
22.04.2022 2.3.9.6Eigenvalues and eigenvectors (Gustavo)
22.04.2022 3.5.1 - 3.5.5 Symmetry transformations and the harmonic oscillator
28.04.2022 2.3.9.8Eigenvalues (Erika)
28.04.2022 2.3.9.15Liouville equation (Hugo)
28.04.2022 2.3.9.16Unitary transformation of singlet states (Leandro)
28.04.2022 3.6.1 - 3.6.5 Superposition states of a harmonic oscillator
29.04.2022 2.4.7.1Coupled two-level atom (Hugo)
29.04.2022 3.7.1 - 3.8.3 Kicking, shaking and forcing a harmonic oscillator
05.05.2022 2.4.7.4Particle in a homogenous gravitational field (Lucas)
05.05.2022 2.4.7.5Phase shift in a Ramsey-Bordé interferometer (Claudio)
05.05.2022 2.4.7.6Commutator of a function of operators (Alejandra)
05.05.2022 4.3.1 - 4.4.4 + 5.2.1Angular momentum algebra, coupling of angular momenta, periodic potentials
06.05.2022 3.5.6.3Vibration of a harmonic oscillator (Erika)
06.05.2022 5.2.2 + 6.4.1 - 6.4.3Bloch oscillations, time-dependent perturbations
12.05.2022 3.6.6.1Sum of displacements operators (Hugo)
12.05.2022 3.6.6.2 Harmonic oscillator and coherent states (Cosme)
12.05.2022 3.6.6.5Schrödinger cat state (Leandro)
12.05.2022 6.4.4 + 9.1.1 - 9.1.2Transition rates, charges in electromagnetic fields, light-matter semiclassically
13.05.2022 3.6.6.7Lamb-Dicke regime (Claudio)
13.05.2022 13.1.1 - 13.2.4Dipolar approximation and selection rules
19.05.2022 3.6.6.11Electric field amplitude and fluctuation (Gustavo)
19.05.2022 3.6.6.12Beam splitting a Fock state (Leandro)
19.05.2022 3.6.6.13Wavefunction of a harmonic oscillator in a Glauber state (Alejandra)
19.05.2022 13.3.1 - 13.4.5Density operator and the Liouville equation
20.05.2022 4.2.3.6Transition matrix elements (Cosme)
20.05.2022 13.5.1 - 13.5.3Bloch equations with spontaneous emission
26.05.2022 4.3.4.5Uncertainty of angular momentum components (Erika)
26.05.2022 4.3.4.6Matrix representation of the components of the angular momentum (Cosme)
26.05.2022 4.3.4.7Spin-1/2-particle in a magnetic field (Lucas)
26.05.2022 13.6.1 - 13.6.5Line broadening effects and saturation
27.05.2022 4.3.4.8Spin expectation value for a two-level system (Erika, Claudio)
27.05.2022 13.7.1 - 13.7.4Raman-coherences in three-level systems
02.06.2022 4.4.5.7Transition amplitudes between Zeeman sub-states (Leandro)
02.06.2022 4.4.5.13External product of two spins (Cosme)
02.06.2022 4.4.5.14Coupling three spins (Alejandra)
02.06.2022 9.1.3.1Lagrangian of an electron in the electromagnetic field (Lucas)
02.06.2022 14.1.1 - 14.1.4Quantized radiation, the dressed atom picture
03.06.2022 13.3.5.2Pure states and mixtures (Erika)
03.06.2022 13.3.5.4Thermal mixture (Hugo)
03.06.2022 13.3.5.5Thermal population of a harmonic oscillator (Claudio)
03.06.2022 14.2.1 - 14.2.4The (quasi-)distribution functions P, Q, and W, squeezed states
09.06.2022 13.3.5.6Density operator of a Glauber state (Cosme)
09.06.2022 13.3.5.8Partial measurements (Alejandra)
09.06.2022 13.4.6.4Bloch vector and Bloch equations (Lucas)
09.06.2022 13.4.6.6Sequence of Ramsey pulses (Leandro)
09.06.2022 14.3.1 - 14.3.3Jaynes-Cummings model, quantum correlation in light fields
10.06.2022 13.4.6.8Atomic clocks by the Ramsey method with spontaneous emission (Claudio)
10.06.2022 13.4.6.9Photon echo (Claudio)
10.06.2022 13.5.4.6Purity of two-level atoms with spontaneous emission (Hugo)
10.06.2022 14.4.1 - 14.4.4Spontaneous emission, correlation functions
17.06.2022 13.5.4.12Quantum Zeno effect and saturation broadening (Lucas)
17.06.2022 13.5.4.13Saturation broadening and Autler-Townes splitting (Cosme)
17.06.2022 13.6.6.2Saturated absorption spectroscopy (Alejandra)
17.06.2022 13.8.4.1EIT & dark resonances (Erika)
17.06.2022 18.1.1 - 18.1.1The spectrum of resonance fluorescence
23.06.2022 13.8.4.2STIRAP (Claudio)
23.06.2022 13.8.4.3Adiabatic sweeps (Claudio)
23.06.2022 14.1.5.1Photon statistics (Erika)
23.06.2022 14.1.5.2Converting a pure state into a mixture by incomplete measurement (Hugo)
23.06.2022 18.1.2 - 18.1.7Introduction to numerical programming software, Matlab
24.06.2022 14.2.5.1Glauber-Sudarshan and Husimi distribution (Lucas)
24.06.2022 14.2.5.9P-, Q-, and Wigner distribution functions for Glauber states (Alejandra)
24.06.2022 14.4.6.1Time-evolution in the Jaynes-Cummings model (Leandro)
24.06.2022 19.1.1 - 19.2.5Cooperativity in light scattering, the coupled dipoles model
30.06.2022 14.4.6.4Vacuum Rabi splitting (Claudio)
30.06.2022 14.4.6.5The Q-function in a Jaynes-Cummings state (Hugo)
30.06.2022 14.4.6.6Creation of quantum correlations in an optical mode (Alejandra)
30.06.2022 14.6.4.2Non-Hermitian time evolution (Erika)
30.06.2022 20.1.1 - 20.1.5Collective states in the Dicke model, spin squeezing
01.07.2022 20.1.6.3Collective spin of a coherent spin state (Cosme)
01.07.2022 20.1.6.9Spin squeezing with two atoms (Lucas)
01.07.2022 20.2.3.4Equilibrium phase transition (Leandro)
01.07.2022 20.2.1 - 20.3.3Super- and subradiance, interacting atoms

Other possible topics
15.1.1 - 15.1.2Quantum jumps and quantum measurement
17.1.1 - 17.1.3Electromagnetic forces
17.2.1 - 17.2.4Optical forces
17.3.1 - 17.3.3Photonic recoil on free and confined atoms
18.2.1 - 18.3.1Mie scattering, scattering from continuous and from disordered clouds
18.4.1 - 18.4.3Bragg scattering from periodic clouds, photonic bands
21.1.1 - 21.2.2Atomic motion in optical cavities
21.3.1 - 21.3.3Microscopic self-organization phenomena
21.5.1 - 21.5.5Quantization of the atomic motion in cavities
21.6.1 - 21.6.5Quantized light interacting with atoms moving in cavities
22.1.1 - 22.6.5Atom optics, cooling and trapping
23.1.1 - 23.2.9Quantum statistics of bosons and fermions
24.1.1 - 24.2.5Bose-Einstein condensation
24.3.1 - 24.4.3Solutions of the Gross-Pitaevski equation
25.1.1 - 25.4.3Superfluid and coherent properties of Bose-Einstein condensates
26.1.1 - 26.3.4Interaction of Bose-Einstein condensates with light



Seminar

Date of presentationSpeakerTopic
-------------------------------------------------
07.07.2022 presencialAlejandra The quadratic and the dynamic Stark effect
07.07.2022 presencialClaudio Observation of super- and subradiant spontaneous emission of two ions
07.07.2022 presencialHugo Open quantum systems
07.07.2022 presencialLucas Quantum gates
08.07.2022 virtualErika The quantum jump, its history, observation, and simulation
08.07.2022 virtualLeandro Manipulation and control of atomic motion by light forces
08.07.2022 virtualCosme The Bose-Einstein condensation

Evaluation criteria for the seminar:
  Structure: motivation and contextualization, introdution and outline of the organization of the presentation, conclusion
  Content: choice of topics, logical organization and didactics of argumentation, preparation to answer questions and to survive a discussion
  Didatics: abundant use of examples and schemes, interpretation and discussion of results, implication of the audience, capacity of raising curiosity in the audience
  Presentation:clarity and conciseness, organization of the talk or the blackboard, fluence of the presentation
The active participation of every student in discussions following the presentations of other students will also be evaluated!

Suggestions for seminar topics:The quantum Zeno effect,
Second quantization,
Observation of super- and subradiant spontaneous emission of two ions,
Squeezed states,
The Jaynes-Cummings model,
Quantum projection noise,
Quantum gates,
The method of quantum Monte-Carlo wavefunction simulation,
The quantum Zeno effect,
Bloch equations: derivation and interpretation,
The quantum jump, its history and observation,
Schrödinger's cat,
The Einstein-Podolski-Rosen hypothesis and its experimental falsification,
Elitzur and Vaidman bomb testing problem,
Topological phases and the Aharonov-Bohm effect,
Quantum non-demolition measurements,
Quantum correlations and the experiments of Young and Hanbury-Brown-Twiss,
Rydberg atoms,
The helium atom,
The quadratic and the dynamic Stark effect,
Ultracold molecules,
Efimov states,
Bose-Einstein condensation.